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COMPUTATION OF VISCOUS BLAST WAVE FLOWFIELDS

Christopher A. Atwood

The study of the effects of blast-wave impingment upon
vehicles and structures is of practical consideration in the

determination of their survivability. Unfortunately, the

experimental study of the blast-wave/target interaction problem is

expensive, and detailed flowfield quantities are difficult to obtain.
However, recent advances in computational fluid dynamics may

provide a means, complementary to experimental studies, by which

the timely design of effective configurations can be found.

A method to determine unsteady solutions of the Navier-

Stokes equations has been developed and applied. The structured
finite-volume, approximately factored implicit scheme uses Newton

subiterations to obtain the spatially and temporally second-order

accurate time history of the interaction of bast-waves with

stationary targets. The inviscid flux is evaluated using
MacCormack's modified Steger-Warming flux or Roe flux difference

splittings with total variation diminishing limiters, while the
viscous flux is computed using central differences. The use of

implicit boundary conditions in conjunction with a telescoping in
time and space method permitted solutions to this strongly unsteady

class of problems. Comparisons of numerical, analytical, and

experimental results have been made in two and three dimensions.

These comparisons revealed accurate wave speed resolution with

nonoscillatory discontinuity capturing.

The simulation of the inviscid blast-wave problem has been

studied in the past by Champney, Chaussee, and Kutler; by Mark and

Kutler; and by Lohner and Yee. The addition of viscous effects has
been studied in two dimensions by Bennett, Abbett, and Wolf; by

Molvik; and by Hisley and Molvik. The purpose of this effort was to
address the three-dimensional, viscous blast-wave problem.

Test cases were undertaken to reveal these methods'

weaknesses in three regimes: 1) viscous-dominated flow; 2)

complex unsteady flow; and 3) three-dimensional flow. Comparisons

of these computations to analytic and experimental results provided
initial validation of the resultant code. Additional details on the

numerical method and on the validation can be found in Appendix A.

Presently, the code which has been released is capable of single



zone computations with selection of any permutation of solid wall

or flow-through boundaries.

The disadvantage of these characteristic-based schemes is

their expense: 86 l_s/cell/iteration at 140 MFLOPS on a single head

of the CCF ray Y-MP/832. However, memory use is a conventional 38
words/cell. Incorporation of a zonal methodology, a turbulence
model and time metrics would increase the versatility of the

present code.
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An Upwind Approach to Unsteady Flowfield Simulation

Christopher A. Atwood*
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Abstract

A numerical method to determine unsteady wlu-

tions of the laminar, perfect gas Navier-Stokes equa-

tions has been developed. The structured finite-

volume, approximately factored implicit scheme uses

Newton subiterations to obtain the spatially and tem-

porally second-order accurate time history of the in-

teraction of blast-waves with stationary targets. The

inviscid flux is evaluated using either of two upwind

techniques, while the viscous terms axe computed by

central differencing. Comparisons of numerical, ana-

lytical, and experimental results ate made in two and
three dimensions. The results show accurate wave

speed resolution and nonoscillatory discontinuity cap-

turing.
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Nomenclature

inviscid flux Jacobians

speed of sound

specific heat at constant pressure

specific heat at constant volume

total energy per unit volume
flux vectors

flux tensor of second order

enthalpy per unit mass
Cartesian unit vectors

coordinate transformation Jacobian

coefficient of thermal conductivity
Much number or viscous flux Jacobian

static pressure
Prandtl number

velocity magnitude
heat transfer vector

vector of dependent variables

specific gas constant

Reynolds number

position vector in physical space

entropy function
outwaxd-ditected surface normal

time

absolute temperature

matrices of left and right eigenvectors

Cartesian velocity components
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contravariant velocities

volume

Cartesian physical space coordinates

compression parameter

ratio of specific heats

internal energy per unit mass

bulk coefficient of viscosity

ratio of coefficient of thermal conductivity

to the specific heat at constant volume

second coefficient of viscosity

diagonal matrix of eigenvalues, A_

dynamic or first coefficient of viscosity
eurvilineax space coordinates

density

computational temporal coordinate
viscous stress tensor

flux influence parameter

Superscripts

j wave family
m subiteration level

n time level

Subscripts

i,j,k
NS

T

Z,y,Z

_, 17,( direction indices
Navier-Stokes

total or stagnation quantity

partial with respect to Cartesian
coordinate

partial w.r.t, curvilineaz coordinate

Introduction

The study of the effects of blast-wave impingment

upon vehicles and structures is of practical consid-

eration in the determination of their survivability.

The experimental study of the blast-wave/target in-

teraction problem is expensive, and detailed flowfield

quantities axe difcult to obtain. Recent advances in

computational fluid dynamics may provide a means,

complementary to experimental studies, by which the

timely design of effective configurations can be found.

The simulation of the inviscid blast-wave problem

has been studied in the past by Champney, Chaussee,

and Kutler,* Mark and Kutler, 2 L_hner, s and Yee. 4
The addition of viscous effects has been studied in two

dimensions by Bennett, Abbett, and Wolf, s Molvik, e



and Hisley and Molvik. 7 The purpose of this effort is

to address the three-dimensions/, viscous blast-wave

problem.

The techniques developed here utilise tots/vada-

tion diminishing (TVD) upwind and upwind-biased
schemes to resolve the discontinuous flow features

without the oscillations prevalent in the more con-
ventions/ of the central difference methods. Wave

speeds are resolved adequately at large Courant num-

bets through the use of time conservative differencing

and Newton subiterations to retain accuracy.

The following sections provide background material

on the assumptions made, the ans/ysis of the implicit

scheme, and the flux evaluation methods. The exten-

sions of previous work are also noted. Finally, the

methods are applied to five test cases, including com-

parisons of numerieai, ans/yticai, and experimental
results.

The Governing Equations

The Navier-Stokes Equations

The Navier-Stokes equations may be expressed in

integral conser_tion law form, coupled with the con-

tinuity and energy equations as

) (1)

where body forces have been neglected and the cell
volumes are time invariant. Here V is the volume

of an arbitrary fluid packet, _ is the flux tensor of

second order, and ds is an outward directed normal of

a differentia] surface area. The vectors may be written
in Cartesian coordinates as

Q = [p,p_, p% p_, e]T

pu
pu= + p + _'s.

ENs -- puv + 1"=7/

puw -F l"=z

(e + p)u + 1",,u + I",¢_ + 1",,w + q,

pv

pvu + %=

FN S = I_= + p +1"_

(e + p),_ + %,u + 1"_ + %,w + q_

pw

pwu "FI",=

GNS = pwv + r,_

pw= + p + I"=,

where each flux can be partitioned into inviscid and

viscous portions. The viscous portion is composed of

the terms:

The total energy per unit volume is related to the

internal energy per unit mass by • - p_ + pq:_/2. The

perfect gas equation of state, p -" pRT, completes

the system. In addition, for thermally and calorically

perfect gases the specific heats are constant, leaving

e = C,T, and h = c.vT. The ratio of specific heats is

taken as I' = _. = 1.4, and the thermodynamic states
are related using

(e+p) e=
--7--'

Fourier's law for heat transfer by conduction is as-

sumed; hence, the heat transfer can be expressed as

q = -SVT = - (q=i+ +

where _ = k/c, = 7t_/Pr. The Prandtl number for
air is fixed at Pr = 0.72.

The relationship between the first (p), second (A),

and bulk (¢) viscosity coefficients is _ = _/_ + A. The
bulk viscosity coefficient is set to sero in accordance

with Stokes' hypothesis, resulting in A = -2/3#. Vis-

cosity is related to the thermodynamic state using
Sutherland's formula:

where Ct and (7= are specific to the gas in question.

A solution to this system of nonlinear partis/differ-

entlai equations may be obtained numerically over a
discretised domain, which in turn is frequently trans-

formed into a convenient computational space.

Transformation to CurviHnear Coordinates

In order to adequately resolve the solid bound-

ary/fiuld interaction, it is common to transform the

above equations into curvilinear coord_ates which
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canbe body-conformal. Specifically, the body is con-

strained to lie at a constant _, q, or ( value. For a

stationary grid, this transformation can be expressed

= t, _ = _(=, _,,=),. = n(=,y,=), ¢ = _(., y, =)

Application of the chain rule of differentiation yields

8 O a 8

with similar expressions for the partials with respect

to y and z. The inverse transformation gives

8 8 8 8

Again, expressions can be found for the 17and ( par-

tials in a like manner. Represented in matrix form:

=
0

_7

& .. G

T

and for the inverse transformation,

N

z, y, z,

z( y( z(

T-I

0

Combining the use of T = (T-t) -* and finite volume

metrics, such as those described by Vinokur, s leads

to a scheme which is _eestream-preservlng because of

the telescoping property. Hence, if the surface nor-

reals to a constant _, 7/, or ( plane are defined respec-

tively as

%+½ = s.j+½i+ s_._+_j+..._+lk

sj+½ = ,.j+½i+s_j+_+s,j+½k

1

= _(r,-r,) x (r,- re)

s_+½ = a,,_+½i+*y,_+½j+s,,_+½k

1

= _(_,- _,)x (_,- _.)

where the index convention is shown in Fig. 1, then
the metrics can be formed as

1

I
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1

1

17. = J(y(z(--y(z()- _sfj+l

1

1

]

1

¢, = J(z,:_-,_=,)= _',,_+I
1

These metrics represent the projections of the cell face

normal into (z, y, z) space. The faces of the hexahe-
dron exactly enclose the discrete control volume, i.e.,

no gaps are permitted at the edges. Finally, the Ja-
cobian of the coordinate transformation is equivalent

to the inverse of the volume, as related by

1

7
_(_,_,,_)
o(_,,_,_)

= z_(_,z_- y_z_) - =.(_,_z_- y_=_)
+zc(g_z.- _,,z_)

1

= V = _(s,__+ s___+ s___).(_ - =.,)

Utilizing these metrics in the application of the

chain rule to Eq. (1) and subsequent simplification
yields

Q" + E_+ F_+a_ =o

where

Q, = Qy

E'_$ = (ENs_. + F,s_ + GNs(z) P

-- [ENS.. + F,s,_ + GNS.: I_

F_rs = (ENs,_.+ F,,sW+ GNS,_.)Y

= [ENSS. + FM$$, + GNSszIj

GINS -- (EN$¢. + FN$¢y+GNs(z)V

Separating the inviscid and viscous portions of the

flux vectors, in the _ direction E_s = E' + E;, then

_r

E'=V _U+_p

(e + _)u

Here the contravariant velocity is U = u_= +v_¢_+w_¢=,
without metric normalization. The viscous flux can be



represented as

0

r,,G + r,,G + n,_,

E'.= V r.,G + r..G + n,&

r,,& + %,G + n,&

(ue' 2 + re'a + we'4) + (q,_, + q,(, + q,(,)

where the viscous stress terms are evaluated by again

invoking the chain rule, and the flux in the q and

directions are found similarly. The results presented

herein are implemented using either the thin-layer or
the fell viscous term treatment.

The widespread use of the thin-layer approxima-

tion, first implemented by Steger, e can be justi-

fied from either physical or algorithmieal arguments.

Physically, the neglect of all diffusion processes par-

allel to the body is similar to that used in boundary-

layer theory, albeit not as restrictive. Hence, when the

viscous effects are confined to thin regions which fall

along a constant _, q, or _ plane then this assumption

is valid. AIgorithmieally, the banded matrix struc-

ture used in multidimensional algorithms which se-

quentially solve a set of unidirectional problems can

include only these thin-layer terms implicitly. This

thin-layer flux in the r/direction, assumed to be the

body normal coordinate, is expressed as:

0

mlU n + m4v. + maw,

m4u, + m2% + mew,

F;'_= -P ms% + me% + maw,

m, Iiu,+ m2_% + matbw,

+-,4(e% + e%) + m,(_., + _)

where the (-) denotes an arithmetic mean value and

,,,_ = _ n,+ +. mr =

(n; 4; .,)m, = , + + . =

These viscous flux terms may he found for the remain-

ing spatial coordinates as well. The results presented

here are implemented using either the thin-layer or
the full viscous term treatment, as required by the

the flow physics.

NondhnensionaHzation

The governing equations may be nondimensional-
ised by the choice of a length scale, denoted L, and

reference values of p, u, and p such as
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The remaining variablesfollow:

" " -9

P = P/_.I. P = f/@..Y. • = e/(p..lu../)

t = {_t,,//Z, r = p/p, I_= [_,/[_,!

The Reynolds number resulting from this procedure

is Re = _,/L_,.,///2,,l, where the (') denotes a di-

mensional quantity, and the (oo) denotes the quies-

cent conditions surrounding the target before primary
shock arrival.

The Numerical Technique

The development of the scheme will be described by

discussion of the first-order terms, following which the

higher-order extensions will be outlined. The scheme

as expressed for a cell which has a mean flux value on
each of the six sides is

, _ .
+ a__i a__l (E_+_a,_ _-_a,_ • ,I

_+| r_+{. ,
+ -

f'÷,
+ a,_½ :.,-t ( '"_'_'+_- G'"_'"-½)d'_' = 0

In discrete form, after dropping the primes for conve-

nience, the governing equations can be written as

Q"+* Q_'a,_ + Ar [(E.+ _ __+_ .
_d,_- _m_,_ _ _+|j,t _-|j,,.)

[Fn+I _ pn -I-1 %
-l" _ i.j+[.k "ij-_.t I

(6'?.+* _ G?+* ._+ _j,_+} ,j,,,_½_}j_= 0

where n denotes the time level in this implicit repre-

sentation, and A_, An, and A_ are set to unity for
convenience.

These flux terms may be evaluated using a tech-

nique which may be broadly classed as either central

or upwind. The latter technique is chosen for this

study for the desirable numerical properties, such as

diagonal dominance of the flux Jacobian, and for the

physical dependence on zones of influence which are

inherent in upwind schemes.

Upwind Schemes

Upwind schemes bias the derivative evaluations re-

quired to determine the flux across fluid ceils accord-

in 8 to the sign of the eigenvalues. In this manner

these methods bring the physics of the hyperbolic sys-

tem, the unsteady Euler equations, into the numerical



solutionprocess.Tofacilitatethe implementationof
theseupwindschemes,theeigensystemisdetermined.
Thesimilaritytransformationwhichdiagonalisesthe
unsteady,inviscid,gas-dynamicequations,shownby

Warming, Beam, and Hyett, 1° is outlined as follows

E = AQ = TAT-1Q

where the rows ofT -1 are the eigenvectors and

A= A++ A- = diag [& _, _, _ + _,_ - _] IIs[I

using normalised contravariant velocities. The eigen-

values can be split according to, among other split-

tings, their signs:

A_ =
2

Two upwind schemes are implemented here to com-

pare the results which may be obtained with either of

the techniques. The early portion of this discussion

will be shown unidimensionally; the multidimensional
extension will be outlined towards the end of this sec-

tion.

Flux Vector Spllttlng

The shock-capturing scheme developed by Steger

and Warming 11 revisited the classical characteris-

tic procedures. They found that the Euhr equa-

tions possessed the property of homogeneity of de-

gree one for the equation of state used here, meaning

E(aQ) = ¢_E(Q). For a vector with this property
E = AQ and consequently the flux vector can be split

into two parts, each physically corresponding to the

right and left moving waves. This technique resulted

in the flux being represented as a combination of the

subspaces associated with the positive and negative

eigenvalues, expressed as

E = T(A ++A-)T-1Q = (A ++A-)Q

= E++E -

where T and T -1 are the right and left eigenvectors,

respectively. The flux across a cell face can be deter-

mined by

E,+i = ELi + _.j

+ " • + A_.+|Q,+I= A_+|Q,,3

Because the Jacobian at i + _ is dependent on two
states, this solution method now diverges from the

original flux vector splitting. The treatment of this
Jacobian is shown in a following section. Linenrisation

in time can be performed for one flux as follows, the

extension to the remaining flux terms is omitted for

brevity. At the n + 1 time level,

E_.+ 1 [d+ 'tn+l t"__+1 [A- 'tn+l t"_n +1

= (a+)_'+_ 6Q' + (a-)_+t6q'+l + _+t
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where the implicit change in the dependent variables

is given by SQ = Q,,+I _ Q-. Note that the Jacobian

matrices are frozen at time level n. The remaining

flux, E? +1 may be obtained similarly.
i--_'

To assess the effect on stability of this type of

linearisation, a procedure given by Barth t3 is ap-

plied to this method. Using the semidiscrete form

OQ,/_ = -P_, then

1

Using frozen Jacobian matrices, the method can be
linearised as follows:

rlz (aR)"]sQ=-R" (2)
"_ + \aq/ ]L

where for the first-order subset the Jacobian is a block

tridiagonal matrix. The blocks along the i ts row are

(-V_)aq,__ = _

oQ-=.=
oR, _ ,Oq,+x A=

This scheme is inherently conservative in space be-

cause of the telescoping property of the finite-volume
formulation; analysis of this scheme reveals that it

is also conservative in time, thus allowing the use of

large Courant numbers. A demonstration of this anal-

ysis proceeds by writing the scheme as

hence

[' ]-_ -I- A" _Q - -R n = -a'_q "

q"+_ + AtA"Q "+_ = Q* (3)

In order for the scheme to be conservative in time over

a periodic domain, the global average of a solution
! 0

must remain constant for all time, i.e., _=I Q_ =

_=_ Q? = _i--1 q_+l. Hence, when Eq. (3) is
summed across the domain, the result is that the
columns of A n must sum to zero. For the scheme out-

lined here, this can be verified with some effort. Use of

these linearisations obviates the need for convergence
at the subiteration level to obtain time conservation.

Flux Difference Splltthag

Flux difference splitting methods are based on

the Riemann problem, solved exactly by Godunov in
1959. ts The Riemann problem is composed of m + 1

piecewise constant states separated by m wave fami-

lies. The waves include shocks, contact surfaces, and

rarefaction fans. For each of the Riemaan problem

cells, the transition of the dependent variables is a



functionof a parameterfamily.Thesolutioncanbe
foundoncethesetransitionstatesare known. Approx-

imate Riemman solvers simplify the numerics of the

problem by eliminating the iterative process required

to find the intermediate states. Figure 2 shows a

schematic of the Riemann problem with the piecewise

constant states separated by the appropriate wave

families. The flux through the cell face is

E,+ t =
1

- 2A=(E' ÷ E,+, - AIEI,÷+)

where IEI "- IAIQ - (AS- A-)Q = [T(A÷ -
A-)T-t]Q. The flux differences associated with the

-t- and - traveling waves are

AE++.I.} -- (TA+T-t)i+}(Qi+t - Qi)

_E,+ i = (TA-T-_),++(Q++_ - Q,)

Again utilising the scmidiscrete form 8Qi/St -- -Ri,
then

1
[(_,+, - E,_,) - (_IEI++++ AI_I,_+)]

This method can be linearised using a procedure simi-

lar to that described previously in Eq. (2). The blocks
of the ith row are now expressed as

8P_ I ( 8,,,E,,_,)80+-, = 2A-"_ -_-i + 80+-,

8I_ I ( SAIEIi+ . 8AIEIi_,)8Q--S.= 2az oO+ + OQ+

8,% , ( 8AIEI,++)80++, = 2A---;&+* sO++,

Substitution of the flux difference splitting expression

yields

8_IEI+++ 8 [IAI,+}(Q,+, - Q+)]
8Qi+, = 8Qi+1

8AIAI+++
= IJli++ + 8Qi+t (Q++,- Oi)

These true Jacobians are expensive to compute, and

the simplification to approximate Jacobians is made

as

8_IEI,++ _+IAI+++
8Qi+,

Utilisingthese approximate Jacobians,the lineari,a-

tion proceeds as

E?.+* 1__t +_+, + Ep,_*- AIEI_+_)_+1 = 2Az_-,

_ I [(Jp + IAI_'+½)6Qi2Az

+(&-+, _ IAIh+)6Q,+,] + _m_+j
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where E "+1 = E" + An6QandQ "+* = Q" +

(SQ/@t)"At. The flux through the remaining faces

are determined similarly. This scheme can also be

shown to obey the criterion for conservation in time.

Roe Averaging

In order to determine the Jacobian at the cell face

i+ }, some function, A = A(QL, QR), must be as-
sumed, where the subscripts indicate left and right
states. The location where this flux evaluation occurs

is among the discrepancies between finlte-difference
and finite-volume schemes. The Jacobian form used

here is attributable to Roe, .4 which provides an ap-

proximate solution to the Riemann problem. This Ja-

cobian is created through the use of a parameter vec-

tor composed of a geometric-like mean of the states.
The more obvious arithmetic Jacobian forms, such as

A = }(AL+Aa) or A = A(_(QL+Qa)), are not con-

servativeforms. Conservative Jacobian forms satisfy

A(Qr., Qa)(QI, - Qa) = Er. - ER. Stated explicitly,

the Roe averaging operation is

=
V_ + v'_

PL + 2_ + PR

p_(hr)_+ _((aT)L+ (hT).)+ pa(hr).
PL + 2_ + PR

where a (-)denotes a Roe averaged quantity and the

latter forms are presented as inexpensive alternative

expressions. Substitution of (i) for L and (i + 1) for
R allows the evaluation of the Jacobian at the inter-

mediary cell face. For the flux vector splitting case

described earlier, MacCormack is has found this aver-

age helps to alleviate excessive numerical dissipation

in regions dominated by viscous effects. Roe aver-

aged values are utilised throughout the development

presented here.

Higher-Order Extensions

Spatially first-order methods frequently provide in-

adequate resolution of the fiowfield. However, the

methods discussed above can be extended to higher-

order spatial accuracy by modification of the right

hand side. In order to assist in the preservation of
well-behaved solutions near the discontinuities admit-

ted by the strong conservation law form of the Euler

equations, a total variation diminishing technique is

implemented. If the total variation of a solution is de-

fined as TV(u) = _.eo_ eo I_+x - u_[, then a solution
.+1 nwhich follows TV(u -') _ TV(u ) is TVD. The TVD

constraint can be shown to result in diagonal domi-

nance, allowing the use of relaxation schemes. In this

manner the scheme may be extended to higher space



accuracy thoughout the smoothly varying regions of

the field, reducing the accuracy in localities of high-

gradient and extrema in order to obtain sharp and

osciUation-free resolution. These methods are rigor-
ously applicable only to scalar nonlinear equations or

a system of linear equations in one spatial dimension.

Application of these schemes to multidimensional sys-

tems of nonlinear equations are generally not TVD.

Moreover, it is not clear that the hlgher-order accu-

racy of the unidimensional problem is retained in mul-

tidimensional cases. However, the results which can
be obtained demonstrate the usefulness of the tech-

nique.
Of the several methods which fall into the TVD

domain, 4 the technique implemented here is one at-

tributable to Chakravarthy ud Oshet, TM the develop-

ment of which follows for completeness. In this formu-

lation, the higher-order flux can be expressed as a sum

of a f_st-order flux, denoted El+½, and a flux correc-
tion term. The flux correction terms are determined

by first computing the flux differences across the m

wave families mentioned previously. Subsequent lim-

iting of these flux differences and summation across

the wave families results in the higher-order flux. This

flux is expressed as

- _ d_+ ½ + dE__ i4 . T

where (-) and (=) indicate a quantity that has been

limited, j is the index denoting the wave family, and

i is the index assigned to a cell center. Using the no-

tation of/J for the rows of the left elgenvector matrix,

T -1, and 1J for the columns of the right eigenvector

matrix, T, then the measure of the change in the de-

pendent variables is

_"+t = ly'+t • (Q,+I - Q,)

The measure of the change in the flux is defined as

o_ = _Y_ = (_Y++ _-)_

the eigenvalues being split as shown previously. The

limited counterparts of these values are obtained as:

_+| = minmod[o'_+|,_3o'_+½]

:- ]o'i+| = minmod ½,/_r_-+t

_++½ -- minmod[_+t,_+_½ ]

--'+ + if+
o',__ -- minmod[o'/_,,_/+,]
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This limiter returns the argument of smaller magni-

tude when the signs are equal, and returns zero when

the arguments are of opposite sign. This procedure

cfl'ectivdy adds dissipation locally in regions of high

flux gradient and at inflection points. In this manner,

monotonieity is preserved by preventing the creation

of new extrema while preserving the global accuracy

of the solution. While formal accuracy estimates are

difficult to ascertain because of the nonlinear applica-
tion of limiting to different wave families, numerica]

experiments have demonstrated that the giobai accu-

racy of the underlying scheme is preserved. 17

The compression parameter, _, is restricted accord-

ing to 1 < _ __ _ and the limiting operator is given
as

minmod(z, y) - sign(z) (max {0, rain [Iz J,9sign(z)]})

The compression parameter reduces the amount of

dissipation added, the range being bounded by ac-

curacy and TVD constraints. Finally, the limited flux
difference values are expressed as

dEi+½ = o'_+tT,_+ t

_Y+ -_+

This asymmetric limiter is designed to modify the

fluxes only in the rapidly varying portions of the
flow, where nonphysical oscillations are likely to oc-

cur. Since these high-gradient regions are confined

to thin regions, the dominant solution domain is dif-

ferenced in accordance with the underlying scheme.

Variances in the value of the compression parameter

allow the fluxes to be limited for different gradient
levels. This implies that use of _,_u will cause the

limiting action to be taken only in the high-gradient

regions, and lower values of 13 will result in limiting

for commensurately lower flux gradients. The variety

of schemes which can be obtained using this technique
are shown in Table 1.

Table 1: Summary of schemes.

_b Unlimited Scheme 13,ha=

-1 Fully upwind 2

|
- _ Nameless i

0 F_omm's 3

3 "_ Order 4

½ Low TE 2'_ Order 5

1 Central co

2nd order TE

0

1 f,,,

Here = (½- definesthe le ding



term of the truncation error for the unlimited form

of the schemes. Local metrics have been used in the

above method to maintain reasonable computations]

efficiency, a satisfactory approximation for grids which

do not contain rapid variations.

Viscous Terms

The viscous terms axe treated through central dif-

ferencing about the cell faces. The explicit terms axe

conventionally differenced effter chain-rule expansion,

inclusive of the cross terms if these diffusion processes

are deemed significant. The left hand side does not

include these cross terms, and the resultant viscous

Jacobian, employing V = Lo,u, v, w, e]T as the prim;-

tire variable vector, is

0 0

0 m2_

M -- - 0 m_3

0 m24

0 ms_

0 0 0

pszsy/3 ps, s,/3 0
m. _sys, /3 0

m_ m44 0

TrtS8 ms4 fns5

4 4--

"_ =.(i;".' + s,'+s:), m. = .(,: + _,: + s:)

,_. =_,(s:+s:+ !,:) _,, = _(,: + 4 + s:)
3

ins2 -" urn22 -]- _m28 -{- tot/124

ross = urns2 + _m_-[- wins4

_154 _- UYrt42 + _Ert43 "J" toYn44

Now, expansion of the block structure gives

[ At + 'I6Q__,_, _

_1 6

- _-q0,,-I

At A+-I- I +-_-[ _+ld,t-- A_|d,_

+

+

+

+%+,J+;,'- _'_-i,'

+q+,i,_+i- q3,'-i

Arc- }sOid, l,+,

"_-Ai+t,i, _ 6Oi+l,j,k = AQi,j,k

where N = OV/OQ and only the thln-layer terms in 17
are shown here.

Factorisation

The extension of the unidimensions] techniques

given above is accomplished through dimensions]

splitting. The method used here is that ofYanenko, xs

where the factors axe chosen in the _, % and _ direc-

tions. Expressing the three-dimensions] equations in

compact notation as

AT Az B AT 6
(*+ k-_A + A. + _--_C)Q= _Q

then the factorisation procedure yields

A_

This system can be solved sequentially through the

use of intermediary steps without loss of time accu-

racy. Although alternating direction implicit schemes

of this type offer advantages of vectorisation, the sys-

tem is solved as s sequence of unidimeusions] pro]>-

]ems, hence limiting the size of the time step due to

stability restrictions, x° The use of this technique here

is justified by the requirement of adequate time his-

tory flow resolution, thus imposing u additional con-

straint on the maximum feasible time step. Appli-
cation of s line Gauss-Seidel method to the second

test case confirmed this hypothesis. This relaxation

method offered a slightly increased stability range, but

not enough to warrant its additions] expense. Ad-
ditiona]]y, since for the factored scheme the flux ex-

change occurs at the same time level, the technique is

conservative, even when convergence at the subitera-

tion level is not attained for each time step.

Newton Iterative Technique

Reduction of the linearization and factorisation er-

rors is achieved by a Newton iterative method of the

type described by Rai and Chakravaxthy _° and Rogers

and Kwak 3_ is utilised, albeit with the addition of al-

lowance for a varying step size. e Assuming that the

initial guess lies within the radius of convergence, the

right hand side is converged to an axbitraxy accu-

racy while holding time fixed. Since the right hand

side includes the higher-order difference representa-

tions of the Navier-Stokes equations, these errors are

eliminated at convergence. The method is discussed
below where m is the iteration index and n is the

conventions] index denoting time level. Discretizlng
Q, + E, = 0 gives

1 _Q.+X,-+x_ Q.+,,..)

= Q_+,,-+_+ _____(Q.+x,-_ q.)
/,.%T

761



= ! [Q.+,,m+,_ Q.,..+,_ (Q_+,,m_ Q.)]
Ar

Defining &Q' = Q,,+I.,,_+I_ Q_+I.,,,,then

z_Q' = A_QI'+_'m+' - (Q_+"'- Q_)
= _A_+',-_+' - (Q-+','_- Q')

Linearization at iteration level m + 1 gives

(o_+' _" 6Q,
_+'"+_ = _+'" + \ aq /

where the flux Jacobian has been f:ozen at iteration

m. Substitution yields

I$Q' = -A_rE_= +I''_-A'r _--_A'+I''nSQ'-(Q '*+'''-Q'_)

Rearranging results in

I + _7"A'_+'"n] ,SQ'= -(Qn+',m-Q'_+A'rE_f+1'"n)A= J

which reverts to the standard noniterative form when

no subiterations are taken, as can be seen by substi-

tution of n for n -k 1, m.

The temporally second-order accurate representa-

tion is found by extension of the above procedure.

Using a three-point backward time stencil,

Q, = CoQ _+'+ C_Q_ + C2Q_-'

where

Co =

Ci :

I--0" O"

(1 - ,T)A,-,+ An' C, = (1 - ¢)Ar,+ A_-_
-I

(I- _)a_,+ An

and _ - (1 + Arl/A_'2)=. The elapsed time between

the n - 1 and n time levels is given by A_I and the

step size between n and n + 1 is A1-2. Finally,

+, .-L,,:+,,,,,I,Q,=+ CoA= J

c,Q,, _Q,,_,)_ l___+,,,.
-(Q"+""+ _ + co Co-"

which again reduces to the special noniterative case.

The use of a variable time step allows the solution

to progress using a constant Courant number, possi-

bly preventing inadvertent divergences. Higher-order

accuracy in time may be determined by extension of

the above technique, albeit with additional memory

requirements.
The assertion that this technique reduces the fac-

torization and linearisation errors is substantiated as

follows. The right hand side of the method contains

the discretized governing equations in their pure form,

that is, without the numerical approximations utilized
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to attain rapid convergence. The left hand side allows

the use of large time steps by relieving the Courant-

l_iedrichs-Lewy stability constraint. Deferring the

question of uniqueness, if a set of dependent variables

is found such that the right hand side is satisfied, then

this field is a solution to the discretised equations re-

gardless of the approximations made to strive at that
set.

Grid Generation

Grid generation is a significant portion of the ef-

fort spent in obtaining the flowfield about any rea-
sonably complex geometry. A structured approach is

utilised in this study, with the generalized grids gen-

erated using codes written by Steinbrenner, Chawner,

and Fouts,== and Atwood and Vogel. =s The cases cho-

sen here were, to a certain extent, driven by the an-

ticipated time costliness of the surface definition and

mesh generation.

Boundary Conditions

The block implicit boundary conditions are imple-

mented in a manner consistent with the previously de-

scribed flux split linearisation described earlier. The

inviscid and viscous impermeable ws]l conditions are
prescribed similarly to those given by MacCormack. 24

Although the following procedures are presented for a

cell face which lies along a constant _ plane, the pro-

cedure may be generalized for application to any cell

boundary.

The inviscid, impermeable boundary condition is

described for a pair of cells between which the surface

lies, depicted in Fig. 3. In the following discussion,

the cell above the wall will be denoted by subscript 2,

the cell below the wall by subscript 1. At cell centroid

2 the velodty is expressed as

I_== ul+ _j + _kl2

and at the inviscid wall the surface norms] is

I

_'.,,,,= i-T_(,,,i+ .,j+ ..k)l...

= (i.i + _,j + i.k)l..,

hence the velocity component normal to the wall is

cn: = I1¢,.:11+'..,,
= (,,_'.+ ,i, + ,,,_'.)(_'.i+ i,,j + _',k)

Since, ¢ = _, + 17n, then the tangential velocity com-

ponent is

= [,,- _:(,,_'.+ ,,_',+ ,._'.)]i

+[,, - _-,(,,_-:+ ,,_',+ ,,,_'.)]j
+[,,,- _',(,,_'.+ ,_'.,+ w_',)]kl=



The inviscid condition is satisfied by _l = _;, while

V,1 = V,,_ specifies the impermeable condition. Re-

fleeting total energy and density as even functions,

then a Riemann problem can be solved at the wall to
determine the flux. This amounts to the wall being

represented as a contact discontinuity by constraining

the ¢ontravariant velocity to vanish. Implicitly, this
results in

6Q1 = R-1ER[._iSQ_ (4)

where

R-XER =

1 0 0 0 0

0 1 - 2_; -2"i.'i, -2"i_. 0
0 -2"i,'i. 1-2F_ -2"i,'i, 0

0 -2;,;, -2_',_, 1 - 2;,_ 0
0 0 0 0 1

The block tridlagonal system may be written as

6Q1
6Q2

AQ1
= AQ_

i

Now the change in flux across an arbitrary cell wall

boundary is given by AE,,,jI = A+$Q1 + A-6Q2, or

the sum of the changes in the flux contribution from

the positive and negative moving waves. Substitution

of Eq. (4) yidds

AEwau = (A+R-1ER + A-)6Qa

and it can be seen that dependence upon 5Q1 has been

eliminated. Hence, the block tridiagonal system may

be represented with embedded boundary conditions
as

B" c._ 6Q3 AQ_
A_ B_ Cl 6Q3 = _Qs

".. i i

where B" is the appropriatdy modified Jacobian.

The viscous impermeable wall imposes additional

constraints on the specification of the wall flux.

Again utilising a primitive variable vector V =

Lo, u, v, w, e]T, then

$V1 = diag[1,-t,,,-t,,-tw,-t]6V2 = Og_

for a wall face at _. In this form the toggles

t,,, t,, t_, and t are set at -1 or 1 for a slip or a no-

slip condition, or adiabatic or isothermal wall, respec-

tivdy. This may be seen by simply rearranging ex-

pressions of the form uwdl = _(ul + u2) or u_,au =

ul = u2. Having already specified the impermeable
wall conditions earlier, only the viscous terms at the

wall are of present concern. Looking at the terms of

the form

AQ2 = _--¢t2(-MNt6Q1 + MIV'25Q2 +...)

then substitution of the wall relations above leaves a

term

AQ3 • OV_ M Or3,,.,
= _ _' + _-_.o,¢, +...]

At [M (z_ OV,'_ oV, _Q, +.. 1

which is subsequently embedded into the block struc-

ture. The dependent variables within cell 1 are spec-

ified according to boundary-layer theory, holding the

pressure gradient sero normal to the wall. The re-

maining variables follow from fluid and thermody-
namic rdatious.

The class of problems investigated here revealed

that the use of block implicit boundary conditions

resulted in significantly enhanced convergence. This
beneficial effect is caused by the faster signal propa-

gation arising from the incorporation of the boundary

conditions within the linear system.

Results and Discussion

The methods introduced in the previous sections are

applied to test cases which demonstrate the capabili-

ties of the algorithm. The viscous term treatment in a

low Mach number regime is shown in the Couette flow

problems, which are compared to similarity solutions

and previously obtained numerical results. Demon-

stration of the inviscid term treatment is shown by

the capturing of transient discontinuities in the shock

tunnel starting problem. The three-dimensional re-

sults are compared with an experimental study of a

hemicylinder mounted in a shock tube.

The Couette flow problem is used to compare the

present method against the method of Beam and

Warming 2s and the similarity solution as given by

Scldichting. ae The solutions shown in Fig. 4 were

obtained using quiescent initial conditions and vis-
cous boundary conditions with no-slip adiabatic walls.

Both of these cases were implemented in the thin-layer

form at a Reynolds number of 6.4, based on the dis-

tance between the plates, equal to 10 -s feet. During

the course of these solutions, slightly more than an

order of magnitude drop in ][P[]oo per two subitera-

tions was observed in the (3 × 10) cell domain. The

Courant number used for the oscillating plate calcu-

lation was approximatdy 10, indicating the viability

of these types of unsteady computations at Courant

numbers greater than unity. The Cour_At number

was computed using _ = -_-_maz[](U, _, W)] + c]]]s][
over each cell in the domain. Identical results were

obtained using both the two- and three-dlmensional

implementations in all directional permutations. Re-

sults reveal steeper gradients than that of the conven-

tionally differenced scheme or the analytic solution, a

possible consequence of the handling of the boundary
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conditions or the viscous term treatment. In addition,

this case was found to be insensitive to the choice of

the higher-order flux correction terms, possibly be-

cause of the dominance of diffusive effects.

The third test case evaluated the inviscid term

treatment through the simulation of the transient

starting process of a planar shock tunnel. The (300 ×

60) cell domain is shown in Fig. 5. The solution of

the Euler equations is presented in Fig. 6 as a com-

parison of the experimental and numerical shadow-

graph images, the former due to Amann, 27 while the
graphical presentation of the latter is due to Buning. 2s

This solution was obtained using Roe flux difference

splitting with _b - 1/3, the upwind biased flux evalu-

ation. The Steger-Warming flux evaluation with Roe

averaging was found to be moderately less stable, but

no significant differences in the results were found for

this case. The maximum compression parameter was

used, and the entropy-fix parameter used in Harten's

formulation was set to 0.15. Disconcertingly nonphys-

ical solutions were produced for smaller entropy-fix

levels, possibly associated with an entropy-violating

condition. The problem was initialized with a mov-

ing shock propagating to the right at a Much number

of 2.97, while the boundary conditions were specified

as impermeable inviscid along the wails and fixed for
the inlet and exit. For the maximum Courant number

of four used here, four subiterations were chosen per

time step based on a subjective judgment of discon-

tinuity sharpness. The Ilpll was observed to drop

approximately an order of magnitude over the course
of these four subiterations.

Physically, this nozzle starting process generates a

reservoir of more than 50 times the initial pressure,

while the density increases by 11 times the initial

state. This reservoir provides the energy necessary

to generate high Mach flows in the diverging nozzle

region for short durations. The ensuing reflections of
the shock with the nozzle wall reveals the complexi-
ties of the shock-shock and shock-contact interaction.

In particular, it can be seen that the development of

the rearward-facing shock, which is directed upstream

while being swept downstream, is resolved. At later
times, the finer scale fluid motion between the pri-

mary and rearward facing shocks is for the most part

lost because of grid coarseness and attendant numer-

iced dissipation. However, increasingly fine structures

are captured as the grid is refined.

The viability of the technique in three dimensions

is shown by the final test cases. These results are in-

tended to replicate the conditions in an experimental

study of a hemicylinder in a shock tube by Kingery
and Bulmash. 20 The experiment test configuration

and pressure transducer locations are shown in Figs. 7
and 8. In order to estimate the costs and benefits

of inviscid versus viscous simulations, the flow about

this geometry was computed using both the Euler

and Navier-Stokes equations. However, the expense

of these three-dimensional simulations permitted the

use of oniy one of the inviscid flux evaluation methods;

the Roe flux difference splitting was chosen.

The simulation was initialized as a planar shock

translating at a Much number of 1.518 before diffrac-

tion over the cylinder began. The Reynolds num-

ber per meter was 23.3 × 10e, computed using T_ =

288.17 K, p_ = 101 325 N/m 3, and specifying the ref-

erence velocity based on the quiescent state. Bound-

ary conditions are specified for the viscous, single sone

computation as follows. In the _-direction, extrapo-

lation is used. This nonphysical extrapolation is ade-

quate for the duration of the early interaction. How-

ever, solutions at larger times axe suspect, where times

after the shocks have propagated through the bound-

aries are defined as large. Additionally, the use of an

advancing front boundary is enabled because of a pri-

ori knowledge of the grid structure and the primary
shock speed. This simple time-dependent boundary

reduces the computational time requirements. In the

r/-direction, the lower boundary defines the surface ge-

ometry of the hemicylinder, and hence is specified as

a no-slip isothermal wall. The top of the domain in

the _-direction, corresponding to the inner radius of

the shock tube, is specified as an inviscid wall, based

on the assumption that the viscous effects on this sur-

face have negligible influence on the results. Finally,

the C-direction boundaries are treated using the vis-

cous condition along the floor of the tube. Symmetry

conditions are used aiong the plane running along the
longitudinal axis of the cylinder and normal to the

floor. To simulate experimental conditions, the wall

temperature was set equal to the temperature of the

quiescent flow prior to primary shock arrival. The vis-

cous grid has normai spacing of approximately 10 -_

meters at the viscous walls. The Eulcr computation

used the inviscid boundary conditions previously dis-

cussed where appropriate. For this Euler grid, since

the areas of the faces corresponding to the geomet-
ric axis singularity are sero then F-s is also zero.

Compensation for the round-off error inherent in the

grid was implemented by eliminating those face areas

which fell below a specified tolerance. The grids and
boundary conditions for these cases are partly shown

in Figs. 9 and 10.

The inviscid computation used _b = 1/3, j3 = 4,

Harten's entropy fix parameter of 10 -4, Roe flux dif-

f_ence splitting, one sublteration per second-order ac-
curate time step, and a Courant number of 15. The

solution was obtained in 1500 time steps without any

change of parameters.

The viscous computation used the same flux evalu-
ation as above with the addition of the second-order

accurate full viscous terms. Because of the viscous

spacing, the Courant number utilized was 104, allow-

iag the solution to be obtained in 6800 time step's

j_.de
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with no sublteratious. In contrast to the inviscid sim-

ulation, the advancing front boundary condition was
utilised in this case.

Results, given in Figs. 11 through 16, show that the

primary shock is captured over two to three cells, the

large physical thickness obtained is an artifact of the

coarse grid used. Adaptive gridding methods would

help maintain sharp shocks, but the anticipated ex-

pense of these methods precluded their use here. Fig-

ures 11 and 12 show comparisons of the numerical

and experimental pressure histories. It is seen that

the peak overpressure is underpredicted by 10%, pos-

sibly owing to the coarseness of the grid which in turn

thickens the shock. This thickening causes the poten-

tial energy in the form of pressure to be transferred
to the surface over several time increments. These

computed surface pressures were extracted from the

domain through the use of a Newton search in three-

space for the cell in which the given (z, y, z) probe

coordinate fell. 2s Subsequent trilinear interpolation

over the cell, where the uniform parametric coordi-

nates (u, v, w) are determined from the positions of
the vertices of the hexahedral cell, allows the pressure

to be computed. Inherent in this first-order approx-

imation lles the assumption that over a discrete cell

the variation of pressure is linear in space.

Figures 13 through 16 show portions of the viscous

simulation at selected times. Physically, the inter-

action process begins with the norms] impact of the

incident shock with the front face of the hemicylinder.

At this time, peak overpressures of six times, and den-

sities of four times that of the quiescent state are gen-

erated along this forward face. As the shock diffracts

over the sharp corner of the target, a separation bub-

ble forms, which eventually envelops a large portion

of the circumferential face of the body. This vortical

motion is depicted in Fig. 16 by instantaneous stream-

lines. A supersonic pocket is generated as the air ne-

gotiates the sharp corner as it rushes from the stag-

nation region left in the wake of the upstream prop-

agating reflected shock. The next significant event
occurs as the shock diffracts over the rearward face,

shedding a strong vortex sheet while an expansion

wave propagates away in a pattern which grows with

time. The diffracted shock then impacts the floor of

the shock tube, reflecting it upwards, while the shock
which diffracted over the circumferential face reflects

inwards from the outer walls of the tube. The subse-

quent diffractions and reflections result in the inter-

action of shocks, expansion fans, vortices, and devel-

oping boundary layers. From experimental evidence,

this gross unsteadiness does not dissipate for more
than 15 milliseconds after the interaction event begins.

However, the primary shock passes from the test sec-

tion 5 milliseconds after the initial target interaction;

therefore, the computation is stopped at that time.

The effects of the viscous terms are seen by corn-

paring the pressure histories in Figs. 11 and 12. While

the pressures along the upstream face are largely un-

changed, the circumferential and downstream faces

are significantly affected by viscosity. The large sepa-

ration along these faces causes low pressure regions

due to this vortical motion. This phenomenon is

more accurately captured in the viscous simulation,

as may be seen by inspection of the pressure histories

at probe 11. Differences between the experiments]

and the present results may be due to poor capturing

of the vortex strength owing to grid coarseness. How-

ever, the higher-order behaviour of the method used

here attempts to reduce the need for finely spaced
meshes. In addition, the occurrence of deformation

of the shroud wall is thought to be a possible event

during the experiment, s°

A limited cost/benefit study of the Euler versus

Navier-Stokes equations was also performed for the

hemicylinder case. For approximately 5.5 ms of flow

history on a (78 x 50 x 25) cell grid, the Eu]er computa-
tion consumed 7.6 processor hours, while the viscous

simulation required 18.2 hours. Prom these results,

the somewhat more accurate solution given by the

Navier-Stokes simulation may be worthwhile. This

is particularly true if the flowfie]d behaviour after pri-

mary shock passage is important.

J
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Conclusions

The application of two upwind schemes to un-

steady, multidimensional problems within a struc-
tured finite-volume framework has been demonstrated

on the viscous three-dimensions] blast-wave problem.

The use of time-conservative differencing and an ap-

proximate R.iemann solver coupled with tots] varia-

tion diminishing methods has resulted in time accu-
rate nonosciUatory flowfield resolution. Newton subit-

erations are utilised to reduce the numerical approx-

imations made, such as factorisation error and the

inclusion of only the first-order terms in the forma-

tion of the inviscld Jacobian. In addition, analysis

and application of two flux evaluation methods found

their differences to be small. Finally, for the blast-

wave/target interaction problem the effect of viscosity

was increasingly significant at later times.

The expense of these s]gorithms is relatively high:

86#s per cell per iteration using a single processor
on the Ames Research Center CCF Cray Y-MP/832

for these vectorlsed codes which have computation

rates of approximately 142 MFLOPS. In addition, the

memory requirement is 38 words per cell. Decreased
processor times may be achieved by many schema.

Freezing the Jacobian for severs] subiterations will

offer a processing time reduction of 15% per subit-

eration, albeit at the expense of memory.

While the additions] computations] cost of these



algorithmsmaybejustifiedonly for cases requiring

their capabilities, the expenditure of human effort is

Hkely to be less than with conventionally differenced

techniques because of the natural scaling of the dissi-

pation with the eigensystem. This feature provides

somewhat greater freedom fxom the numerics, per-

mitring the scientist to concentrate on the physical

problem and the engineer on design.
Further efforts to increase the accuracy and effi-

ciency of these methods may be directed along the

use of nonfactored schemes or implementation on par-

allci machines. Geometries of realistic complexity

will require a sonal approach, necessarily conservative

because of the strongly unsteady compressible flow

regimes considered here. Efficient adaptive grid tech-

niques will reduce the memory and time expense. Syn-

thesis of dynamical, structural, and fluid flow effects

may provide the capability for an interdisciplinary

simulation of the physical processes involved in this

class of problems.

The development of this type of tool partially ful-

fitls the objective of augmentation of experimental test

pro_ams, possibly eliminating the need to test cer-

tain specific configurations altogether. Although the

use of the inviscid flowfield time history is feasible in

the design process, the goal of nesting full unsteady
Navier-Stokes methods within this cycle awaits the

advent of computers of increased power.
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